Quiz 4

December 6, 2018

Let

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

Determine whether A is diagonalizable. If it is diagonalizable, find a nonsingular matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

Solution. We first calculate the characteristic polynomial p_{A}.

$$
\begin{aligned}
p_{A}(x) & =\operatorname{det}(x I-A) \\
& =\operatorname{det}\left[\begin{array}{ccc}
x-2 & 1 & 1 \\
1 & x-2 & 1 \\
1 & 1 & x-2
\end{array}\right] \\
& =(x-2)^{3}+1+1-(x-2)-(x-2)-(x-2) \\
& =x^{3}-6 x^{2}+9 x \\
& =x(x-3)^{2} .
\end{aligned}
$$

Thus, the eigenvalues are 0 and 3 .
Next we compute the eigenspace corresponding to 0 . This amounts to solving $(x I-A) v=0$ when $x=0$ which we do by elimination.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & -3 / 2 & 3 / 2 \\
0 & 3 / 2 & -3 / 2
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

Thus, v is an eigenvector for A corresponding to 0 if and only if $v \neq 0$ and

$$
v_{1}-1 / 2 v_{2}-1 / 2 v_{3}=0 \quad \text { and } \quad v_{2}-v_{3}=0
$$

In particular,

$$
\left[\begin{array}{l}
1 \tag{1}\\
1 \\
1
\end{array}\right] \text { is an eigenvector for } A \text { corresponding to } 0 .
$$

Next we compute the eigenspace corresponding to 3 . This amounts to solving $(x I-A) v=0$ when $x=3$ which we do by elimination. There is just one step!

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

Therefore v is in the eigenspace corresponding to 3 if and only if

$$
v_{1}+v_{2}+v_{3}=0
$$

Consequently,

$$
\left[\begin{array}{c}
-1 \tag{2}\\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \text { are linearly independent eigenvectors corresponding to } 0 .
$$

Combining (1) and (2) yields that $P^{-1} A P=D$ where

$$
P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

